2021年度(第13回)免震構造・制振構造に関わる研究助成の成果報告

大振幅地震動を受ける鋼構造制振構面における鉄骨梁の塑性変形能力評価法の確立

鈴木 敦詞(東北大学)

1. 序

制振架構では鉄骨梁は曲げモーメントに加えて、ダ ンパーから変動軸力を受ける。文献1)では、この変動 軸力を交番繰り返し軸力としてモデル化し、繰り返し 載荷実験及び有限要素解析により座屈性状を解明して いる。交番繰り返し軸力下では、引張軸力作用時に圧 縮側となるフランジでは座屈変形が引き延ばされ、従 来の無軸力や一定圧縮軸力下の場合とは座屈性状が異 なることから、梁の保有性能(最大耐力比・塑性変形 能力)も変動する。

その一方で,文献1)では,片持梁形式の結果により 評価式を構築してきたが,実構造物における梁の性状 は,柱やガセットプレートなどの周辺部材との相互作 用により決定される。文献2)のダンパー量算定法(応 答指定型設計法)では,構造物の変形量を規定するこ とから,周辺部材による拘束を考慮して,所定の層間 変形角における梁の状態を把握することが求められる。

そこで、本研究では、文献2)のモデルストラクチャ に対して応答指定型設計法によりダンパーを設計し、 種々の地震動に対する応答を把握する。さらに、鉄骨 梁-鉄骨柱-ダンパーからなる制振構面を取り出し、 より実構造物に近い条件における梁の力学挙動を精査 する。最終的に、確認された応力伝達機構及び周辺部 材の拘束効果に基づき、鉄骨梁の塑性変形能力評価法 を確立する。なお、本研究では、ダンパーとして座屈 拘束ブレースを対象とする。

2. モデルストラクチャの地震応答性状

2.1 モデルストラクチャに対するダンパー量算定

図1に文献2)のテーマストラクチャを示す。梁及び 柱の断面の例は表1,2の通りである。梁及び柱の降伏 応力は325 N/mm², ヤング係数は2.05×10⁵ N/mm²とし, 完全弾塑性履歴を与えている。ダンパーは図2の応答 指定型設計に基づき設計する。図 2(a)の変位応答スペ クトルは文献3)の設計用スペクトルで Ground Type C とし、地動加速度 a_g は3.0 m/s²とした。重要度係数 γ_1 は1.0 (Class II), 1.2 (Class III), 1.4 (Class IV)の3条件と する。

設計条件は目標層間変形角 θ と設計用地動加速度 μa_g の組み合わせにより、1) $\theta = 1/120 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 2) $\theta = 1/150 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3.0 \text{ m/s}^2$, 3) $\theta = 1/200 \text{ rad} \times \mu a_g = 3$ 固有値解析より求めたモデルストラクチャの固有 周期(0.764秒)より,図2(a)の変位応答スペクトルを 用いて応答変形角 θ を求め,目標層間変形角までの低 減率 R_d (= θ/θ)を求める。図2(b)の性能曲線において, ダンパー塑性率の設計値を4として,性能曲線の凸部 でダンパー量を設計する。モデルストラクチャの層剛 性 K_f ,各設計条件におけるダンパー軸剛性 K_{ai} ・降伏 軸力 F_{ai} の算定値は表3のように整理される。

2.2 モデルストラクチャに対する静的増分解析

前節で構築したモデルストラクチャに対する静的 増分解析を行う。外力分布は CQC 法により求め、1~ 3 次モードを組み合わせる。このとき、外力算定用の 加速度応答スペクトルは、文献 3)の Ground Type C の 条件により与えることとする。

図 3(a), (b)に, それぞれラーメン骨組, 制振骨組 (*θ*=1/200 rad, *µa_g*=3.0 m/s²) に対する静的増分解析結 果を示す。ここで,縦軸は層せん断力 *Q/W*, 横軸は層 間変形角*δ/h_i* である。○プロットは, 梁端ヒンジ形成 時を示している。さらに, 1 層層間変形角が 1/100 rad, 1/50 rad 到達時の層間変形角分布を破線で示している。

図 3(a)のラーメン骨組では、1 層階高が大きいため1 層のせん断剛性が、2 層のせん断剛性に対して小さい。 また、梁ヒンジは層間変形角 $\delta/h_2=0.0057$ rad に最初に 生じる。さらに、下層に変形が集中する soft story mechanism も確認できる。

 $2 \hspace{.1in} 650 \hspace{.1in} \times \hspace{.1in} 250 \hspace{.1in} \times \hspace{.1in} 12 \hspace{.1in} \times \hspace{.1in} 25$

一方で, 図 3(b)の制振骨組では, 上記の soft story

500 ×

500 ×

1

22

$X_3 \land Y \lor Y \lor$ 設計他(甲位: K_{fi}, K_{ai} : [KN/mm], F_{ai} : [KN]												
θ_t		1/12	1/120 rad		1/150 rad		1/200 rad		1/200 rad		1/200 rad	
$\gamma_l a_g$		3.0	m/s^2 3.0 m/s^2		m/s ²	3.0 m/s^2		3.6 m/s^2		4.2 m/s^2		
階	K_{fi}	K_{ai}	F_{ai}	K _{ai}	F_{ai}	K _{ai}	F_{ai}	K_{ai}	F_{ai}	K _{ai}	F_{ai}	
R	194.5	-	_	-	-	-	-	90.0	450.2	249.2	1246.0	
4	249.2	_	-	2.8	18.6	186.2	936.9	378.8	1906.0	631.1	3175.1	
3	323.1	_	-	32.2	216.1	275.2	1384.7	530.4	2668.6	864.6	4349.8	
2	211.8	198.5	2252.6	270.2	2555.8	475.2	3371.1	690.5	4898.1	972.4	6897.6	

动业店 (畄片

mechanism は、目標層間変形角 1/200 rad まで生じてい ない。梁の塑性ヒンジ形成は、図 3(a)のラーメン骨組 に比べて、小さな変形角で生じているが、これは制振 構造では、梁は軸力と曲げモーメントの組み合わせ応 力を受けるためである。塑性ヒンジ形成後は、下層に 変形が集中するが, δ/h2=1/50 rad においてもラーメン 骨組より緩和されている。

2.3 モデルストラクチャに対する地震応答解析

本章で設計した制振骨組に対して地震応答解析を 行う。硬化則は移動硬化とし、粘性減衰を Rayleigh 型 で1次と2次の減衰定数を2%とする。地震動は、直 下型地震動と海溝型地震動を含むものとし, EL Centro 1940, Taft 1952, Hachinohe 1968, Kobe 1995, Tohoku 2011 で、いずれも NS 方向記録を用いる。地震動は最大加 速度で規準化し、3.0 m/s²、5.0 m/s²、7.5 m/s²、10.0 m/s²、 15.0 m/s²の5条件とする。

対象とする梁は、静的増分解析において、最初に塑 性ヒンジが形成される, Y2 通りにおける X4-X5 構面 のX5 側2 層とする。

図4に地震応答解析結果を示す。(a)はベースシア, (b)は梁塑性率, (c)は梁軸力を示し ている。プロットは地震応答解析 結果の最大値を抽出している。ま

0.8

0.6

0.4

0.2

た、各条件の静的増分解析の結果 を併記している。 図 4(a)において, 地震応答解析 結果は、δ/h2=1/100 rad 程度まで静 的増分解析結果と精度良く対応し ている。しかし、変形がより大き

くなると、部材の塑性化が顕著と なるため、静的増分解析との乖離 が大きくなる。

図 4(b)の梁塑性率は、ダンパー 設計条件の影響をほとんど受けない。また、梁ヒンジ 形成時の変形角もほぼ同様である。地震応答解析結果 は、静的増分解析結果と概ね対応しているが、大変形 となると静的解析結果を上限として分布する。

図 4(c)の梁軸力については、静的増分解析では、ダ ンパー降伏時までは線形で増大し、その後頭打ちとな

る。しかし、Y2構面の梁降伏後は、梁の軸剛性が低下 するため,他構面に軸力が伝達され梁軸力が低下する。 しかし、地震応答解析では、梁降伏後も梁軸力が増大 する。梁降伏後は構面間の振動特性が変動し、理想的 な軸力再配分が生じない。そのため、静的増分解析に 対して異なる傾向となったと考えられる。

本解析範囲内において,梁作用軸力は最大で梁降伏 軸力の25%程度となる。梁断面は通常梁せいが高いこ とからウェブ幅厚比が大きくなる。そのため,保有性 能は軸力の影響を受けやすい。一方で,ダンパーに設 計時に想定したエネルギー吸収性能を発揮させるため には座屈不安定現象を防ぐ必要がある。以上より,制 振構面における梁の性状を解明する必要性が示される。

3. 制振構面部分架構に対する有限要素解析

3.1 制振構面部分架構に対する有限要素解析概要

本章では、文献4)の実験結果を基に、制振構面部分 架構の有限要素解析モデルを構築する。解析モデル形 状は、図5の通りで、制振構面の1/4を取り出してい る。解析モデルは4節点シェル要素により構成され、 梁とダンパー、柱とダンパーがコネクタ要素により連 結されている。載荷履歴は層間変形角により制御し、 振幅は*θ*=1/800 rad, 1/400 rad, 1/200 rad, 1/100 rad, 1/67 rad, 1/50 rad, and 1/33 rad で、各サイクル2回ずつ行う。

解析モデルは、4節点シェル要素により構成される。 材料履歴構成則は、複合硬化則により与えることとし、 別途繰り返し材料試験を行い、複合硬化変数を同定す る。試験片形状は、ASTM-E606 に準拠し載荷履歴は 一定振幅(公称歪1.6%)及び正負漸増載荷(振幅増分 0.2%)、ランダム振幅(SAC2000-Near Fault の履歴を圧 縮歪最大値を0.8%に基準化)として、繰り返し応力に よる等方硬化量や、バウシンガー効果による降伏応力 の低減を再現する。

図6にキャリブレーション結果を示す。(a)は全体架 構(ダンパー+鉄骨架構),(b)はダンパー,(c)は鉄骨 架構について示したものである。解析結果は, 軟化部や耐力劣化域も含めて,実験結果にお ける繰り返し挙動を精度よく追随できている。

また、図5に併記するように、梁の局部座 屈はモーメント最大点ではなく、ガセットプ レート溶接部近傍で生じている。また、ガセ ットプレート溶接部の曲げ剛性が相対的に大 きくなるため、梁の曲げ変形はガセットプレ ート溶接部以外で増大する。前述の通り、応 答指定型設計では層間変形角を規定するが、 制振構造では、ラーメン骨組に比べて梁の曲 げ変形が集中することから、梁の周辺部材に よる拘束を考慮する必要がある。

図7にダンパー軸力によるフランジ軸歪分 布を示す。軸力による歪は、歪の解析値から 曲げによる歪相当分を減じて求めている。な お、梁が弾性範囲となる*θ*=1/400 rad を検討対 象とする。(a)が正曲げ(梁引張軸力),(b)が負曲げ(梁 圧縮軸力)の結果である。

図7より,梁軸力方向に対応する歪は下フランジで 得られており,軸力は主として下フランジに伝達され ている。さらに,上フランジでは,偏心の影響で,逆 方向の歪が生じている。

3.2 制振構面の梁の保有性能評価式の構築

前節の解析モデルについて、梁断面・ダンパー軸 力・載荷履歴に関するパラメトリックスタディを行う。 表4に解析モデル一覧を示す。地震動を模擬した載荷 履歴は、前章の地震応答解析結果より得られた、層間 変形角の時刻歴波形を変位制御で与えている。

文献 1)では、交番繰り返し軸力を受ける梁の保有性 能評価指標として修正 $W_F(W_F)$ が提案されている。な お、無軸力時には W_F 'は、文献 5)の W_F と一致する。

(a) 梁断面								
No	_	W						
INO.	Н	×	В	×	t_w	×	t_f	W F
1	650	×	250	×	9	×	16	0.85
2	650	×	250	×	9	×	19	0.82
3	650	\times	250	×	12	×	19	0.65
4	650	×	250	×	12	×	25	0.60
5	500	×	250	×	12	×	22	0.53
6	500	×	250	×	9	×	22	0.72
7	500	×	250	×	9	×	16	0.72
8	500	×	250	×	16	×	22	0.43
9	500	×	250	×	14	×	22	0.47
10	500	×	250	×	10.5	×	22	0.60
11	500	\times	250	×	13	×	16	0.57
12	500	×	250	×	11	×	19	0.59
ſ	4.4		$\alpha < 1/6$					

表4 パラメトリックスタディ解析モデル

$$k' = \begin{cases} (5.18 - 4.6\alpha) & 1/6 \le \alpha \le 1/2 \\ 2.9 & \alpha > 1/2 \end{cases}$$
(2)
$$\alpha = \left(\frac{1}{6} + \frac{A_f}{A_w}\right) \frac{1 - m}{\lambda_w}$$
(3) $n' = \frac{N_{max}}{N_{y,web}} < 1$ (4)

各記号については、文献1)を参照されたい。図8に 得られた保有性能を W_F で整理した結果を示す。また、 図8には文献1)の保有性能評価式を併記している。 W_F 、 は作用軸力の影響をウェブ幅厚比に反映しているが、 図7で確認された通り軸力は主として下フランジに伝 達される。そのため、 W_F 、で整理した場合にはプロッ トのばらつきが大きく、また塑性変形能力については、 文献1)の評価式が過度に安全側となる。

そこで、本研究では、作用軸力の影響をフランジ・ ウェブ幅厚比に反映した $W_{F'}(1-n)$ を提案する。図9に $W_{F'}(1-n)$ により保有性能を評価した結果を示す。図8 に比べて、プロットのばらつきが低減されており、提 案した指標の妥当性が示されている。以上を踏まえ、 本研究では保有性能評価式を以下のように提案する。

$$\tau_{max} = \left[0.5 + \left(\frac{0.6}{\sqrt{W_F / (1 - n)} - 0.2} - 0.01 L / H \right) \right]$$
(5)
$$\mu'_{mx} = \left[-1.0 + \left(\frac{0.4}{\left(\frac{0.4}{W_F / (1 - n) - 0.2} \right)^3} + \frac{4.5}{L / H} \right) \right]$$
(6)

図9に提案式を併記しているが,解析結果を精度よ く評価できている。

4. 結

- モデルストラクチャに対して異なる設計条件を用いてダンパーを設計した結果,梁作用軸力が梁降伏軸力の25%以上となることを示した。
- 制振構面におけるダンパー軸力は、主として下フランジに伝達される。そのため、下フランジでの局部 座屈が生じやすくなる。

スタディ	解析モデバ	V				
(b)	ダンパー	•		(c)	載荷履	貢歴
シリーズ	ダン. θ,	パー Yiaa		Ĩ	載荷履	歴
H-650 シリーズ	1/120 rad 1/150 rad 1/200 rad 1/200 rad 1/200 rad	3.0 m/s ² 3.0 m/s ² 3.0 m/s ² 3.6 m/s ² 4.2 m/s ²		EL Hac k To	Centro Taft 19: hinohe Kobe 19 bhoku 2 正負漸	1940 52 1968 995 011 増
H-500 シリーズ	0% (非 30 50 70 100 150	÷制振) % % %)%)%			正負漸	増
文献4) 漸增 又就2) 漸增 El Centr Taft 195 Hachino Kobe 19 Hachino Kobe 19 Hachino Hac	非制握 非制握 ************************************	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	50% 50% 1/100 gal 300 gal 0 0.5 (b) (c) (c) (c) (c) (c) (c) (c) (c	ダンパ ⁽⁷⁰⁾ 1 300 g	- 軸力 - 100% rad/200 ra - 360 gal - 360	150% dl/200 rad 420 gal 420 g
$ \begin{array}{c} 1.5 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.1 \\ 0.9 \\ 0.8 \\ 0. \end{array} $	·····································	12 10 8 6 4 2 0 WF/(1-n) でよ (1-n) によ	していた。 の.5 の.5 (る保 [、]	+++++++++++++++++++++++++++++++++++++		5 5 7F/(1-n) 形能力
い相差	さした。気が加い		r-+-)~	トル	生田三	曲

3) 提案した評価指標・評価式により、制振構面におけ る鉄骨梁の保有性能を精度よく評価できる。

[参考文献]

- 木村祥裕他:交番繰り返し軸力を受ける局部座屈崩壊型H 形鋼梁の塑性変形性能,日本建築学会構造系論文集,第81 巻,第730号,pp.2133-2142,2016.12
- 2) 日本建築学会:鋼構造制振設計指針, 2014.11
- European Committee for Standardization. Design of structures for earthquake resistance—Part I: General rules, seismic actions and rules for buildings. Eurocode 8; 2003.
- 4) 笠井和彦他:制振架構接合部に対し新たな載荷法を用いた 基礎的実験研究,日本建築学会構造系論文集,第80巻第708
 号,pp.309-319,2015.2
- 5) 五十嵐規矩夫他:鋼構造H形鋼断面梁の耐力及び塑性変形 能力評価のための新規幅厚比指標と幅厚比区分,日本建築学 会構造系論文集,第76巻第668号,pp.1865-1872,2011.10