2018年度(第10回)免震構造・制振構造に関わる研究助成の成果報告

津波荷重に対する免震建物の構造安全性評価

1 はじめに

東北地方太平洋沖地震以後、多岐に渡る津波対策 が行われている。津波荷重 Q_Tの評価手法として、式 (1)および図1の静水圧式が広く用いられている¹⁾。

図1 静水圧式の概要図

ここで、ρ:水の単位体積重量、g:重力加速度、 B:津波受圧面の幅、γ:壁面開口率、z₂、z₁:津波受 圧面上端高さおよび下端高さ、a:水深係数、η:設 計用浸水深である。

建築物への静水圧式の適用性については、津波被 害調査の結果に基づいた検討²⁾がなされているが、 免震建物に対する適用性はまだ把握されていない。

図2 津波荷重に対する構造安全性評価基準

筆者らは図2に示す津波荷重に対する免震建物の 構造安全性評価基準(以下、評価基準)を提案して いる³。静水圧式の免震建物への適用性を明らかに できれば、津波浸水予想地域内における免震建物の 構造安全性評価が可能となる。本研究では、水理模 型実験により津波に対する免震建物の挙動を分析し、 免震建物への静水圧式の適用性について検討した。

2 実験概要

2.1 実験装置および試験体

実験水路および測定機器の配置を図3に示す。実 験水路は、全長13m、水路幅30cm、高さ40cmの矩 形の鋼製水路(一部観察用ガラス)であり、水路端に 作成した水柱を崩壊させることで造波する仕組みで ある。水路はあらかじめ水を溜めた一様水深部(水深 3cm)と陸部に分かれる。一様水深部と陸部の境から レンガ(高さ6cm)を設置し、津波はレンガを越流し て試験体に作用する。

本実験では、図3に点線で示す位置で津波の波高 (以下、便宜的に浸水深と呼ぶ)と流速を、それぞ れサーボ式波高計と電磁流速計で測定した。計測は 試験体からの反射波の影響を考慮して、試験体の受 圧面からそれぞれ 50cm、30cm 前方で実施した。

図3 実験装置の概要

試験体は、免震試験体と波力算定用試験体(以下、 波力試験体)の2種類を製作した。

免震試験体の対象建物は、高さ28m、幅8m、奥行 き24mの8階建てRC造とした。縮尺は1/80とし、 原型の免震周期を4sとした試験体を製作した。表1 の免震試験体諸元はフルードの相似則に従って設定 した。試験体材料は、塩化ビニル樹脂板およびステ ンレス鋼板を用いた。免震層はリニアボールスライ ドと引張ばねを用いて再現した。

波力試験体はアルミ板を用い、上部固定の片持ち 支持として実験水路に設置する(図 5 参照)。試験体 幅は、免震試験体と同じ 100mm とした。

研究助成事業

表1 免震試験体諸元

免震試験体							
	原型	模型(計算值)	模型				
高さH	28m	35cm					
幅 <i>B</i>	8m	10cm					
奥行きD	24m	30cm					
質量m	1997t	3.90kg	3.55kg				
固有周期T	4s	0.45s	0.43s				
水平剛性K	4927kN/m	769.8N/m	760N/m				

2.2 水理模型実験

通過波検定実験と2種類の試験体実験を実施した。 通過波検定実験は、試験体のない状態での浸水深 η と流速 v を計測し、流れの状態を表すフルード数 $Fr(=v/\sqrt{g\eta})$ の算定を目的として実施した。実験は試 験体設置位置でのばらつきを考慮して5回行った。 計測はサンプリング間隔を 1/1000 秒とし、流況分析 のため 16 倍スローの動画を撮影した。

免震試験体による実験は、免震建物の構造挙動の 把握を目的として実施した。津波の浸水深、流速は 図3に示す位置で計測した。試験体の変位、加速度 はレーザー変位計とひずみゲージ式加速度計により 計測した。図4、写真1に実験の概要と様子を示す。

図4 実験概要

波力試験体による実験は、試験体に作用する津波 波力の算定を目的として実施した。津波の浸水深、 流速は図3に示す位置で計測した。防水処理したひ ずみゲージをアルミ板の両面に4枚ずつ貼付け、試 験体の曲げひずみを計測した。曲げひずみからアル ミ板に生じる曲げモーメントを算定し、その値から 得られたせん断力を試験体に作用した津波波力とみ なした。図5、写真2に実験の概要と様子を示す。

3 実験結果

本実験で得られた計測データは、50Hz のローパス フィルタでノイズ除去を行っている。

3.1 通過波検定実験

図 6 に通過波検定実験の浸水深の時刻歴を示す。 ①~④の4波が確認された。①はサージフロントと 呼ばれる第1波であり、②は第2波、③および④は 水路端からの反射波である。ここでは第1波に対す る応答に着目して分析を行う。第1波の最大浸水深 および最大流速からフルード数を算定し、5 回の実 験の値を平均すると 2.17 となった。本実験水路は、 0~2 程度⁴とされる津波のフルード数の最大値に概 ね近い津波を造波できることが確認された。

3.2 試験体実験

免震試験体の変位および加速度の時刻歴の一例を 図7に示す。流速が最大となる時刻 t、浸水深が最大 となる時刻 Tを図中に示している。免震試験体は流 速が最大となる時刻 t 付近で最大応答変位に達する ことが確認された。

図7 免震試験体の変位および加速度の時刻歴

免震試験体の応答をフルードの相似則に基づいて 原型に換算したものを表 2 に示す。表中の値は流速、 浸水深の近い 3 ケースの最大応答値の平均である。応 答速度は応答変位の計測データを微分して算定した。

本実験の対象建物は浸水深 5.3m の津波に対して擁 壁衝突が想定される 60cm 程度の変位となったが、応答 加速度は大地震時に想定されるレベルより小さくなった。 応答速度もオイルダンパーの限界速度として想定され るレベルには達しない程度となった。

表2 実験値と原型の換算値

	浸水深	流速	応答変位	応答加速度	応答速度
縮尺(λ=1/80)	λ	$\lambda^{1/2}$	λ	1	$\lambda^{1/2}$
実験値	6.6cm	175.3cm/s	7.5mm	57.4cm/s ²	4.0cm/s
原型	5.3m	15.7 m/s	59.6cm	57.4cm/s ²	36.0cm/s

免震試験体と波力試験体の計測結果を表3に示す。 免震試験体の波力は、慣性力 ma と復元力 Kδ の和と

研究助成事業

等値とみなして評価した。慣性力 ma は加速度の計測 値 a に試験体の質量 m を乗じ、復元力 Kô は変位の計 測値 δ に免震層を模擬した引張ばねの剛性 K を乗じる ことで算定した。また、水深係数 a は、津波波力が最大 となる時刻における津波の堰上げ高さを動画から計測 し、各試験体の最大浸水深 η_{max} で除することで算定し た。写真 3 に、免震試験体 No.1 の津波の堰上げ高さを 示す。

表3 各試験体に対する波力と水深係数

免震試験体							
ケースNo	浸水深(cm)	流速(cm/s)	フルード数	水平波力(N)	水深係数		
1	7.76	173.0	1.98	7.47	1.74		
2	6.13	157.4	2.03	5.41	1.47		
3	5.86	143.5	1.89	6.00	2.22		
4	5.43	160.5	2.20	6.09	2.76		
5	4.49	124.0	1.87	4.35	2.23		
6	6.51	242.4	3.03	10.29	2.23		
7	3.45	178.9	3.08	5.54	3.19		
波力算定用試験体							
ケースNo	浸水深(cm)	流速(cm/s)	フルード数	水平波力(N)	水深係数		
1	7.33	174.3	2.06	9.92	2.25		
2	6.53	155.6	1.95	6.23	2.14		
3	6.68	144.1	1.78	6.13	2.02		
4	5.99	200.4	2.62	5.93	2.50		
5	5.76	134.8	1.79	4.39	1.65		
6	7.11	147.3	1.76	7.48	2.18		
7	5.31	240.9	3.34	11.35	3.30		

写真3 堰上げ高さ

本報ではフルード数の値が3以下となるケースを 対象に分析した。表3のとおり14ケースのうち11 ケースが該当した。浸水深は4.49~7.76cm、流速は 124~200cm/sであった。フルード数は1.76~2.62とな った。原型に換算すると、浸水深は3.59~6.28m、流 速は11.1~17.9m/sとなった。本実験で造波した津波 の流速は東北地方太平洋沖地震の観測記録²⁾の最速 値である約10m/sを超えるレベルであった。

4 免震試験体に作用する津波波力

4.1 津波波力

流速と波力の関係を図 8 に、浸水深と波力の関係を 図9に示す。免震試験体および波力試験体に作用する 波力は、いずれも流速、浸水深に対して概ね比例的に 増加している。また、両試験体において、流速と浸水深 が近い値のケース No.1~3 それぞれを比較すると、免震 試験体に作用する波力は、波力試験体に作用する波 力と近い値となり、試験体の違いによる波力の大きな増 減は確認されなかった。

図8 流速と波力の関係 図9 浸水深と波力の関係

4.2 水深係数

流速と水深係数の関係を図 10 に、浸水深と水深係 数の関係を図 11 に示す。波力試験体では、水深係数 は流速、浸水深に対して概ね比例的に増加しているこ とが確認された。一方、免震試験体では同様の傾向は 確認されなかった。免震試験体では津波波力が作用 した際に免震層に変位が生じるが、その作用の仕方 により変位にばらつきが生じた。それに伴い堰上げ 高さにも影響が及んだと考えられる。

5 静水圧式の免震建物への適用性

静水圧式の免震建物への適用性を検討する。ここで、式(1)における η は各試験体で計測された最大浸水 深 η_{max} 、水深係数 a は堰上げ高さを最大浸水深 η_{max} で除した値とする。壁面開口率yは0とした。

実験の計測データから算出した水平波力(以下、実 験値)と、堰上げ高さから算出した水深係数を用いて 式(1)で算定した波力(以下、算定値)および水深係数 (a=1.5、2、3)を用いて算定した波力(以下、推定値)を 比較した。両試験体のうち、平均的な結果となった 免震試験体 No.3 と波力試験体 No.2 に作用する波力 をそれぞれ図 12、図 13 に示す。免震試験体、波力 試験体ともに、算定値は実験値を上回る結果となっ た。

免震試験体および波力試験体における実験値と推 定値の比較を図 14 に示す。本実験では、水深係数 *a*=2 とすることで、実験値を概ね包絡できることが 確認できた。算定値と実験値の関係を図 15 に示す。 免震試験体、波力試験体ともに、ほとんどのケース で算定値は実験値を上回ることが確認できた。以上 より、水深係数を適切に設定できれば、免震建物に 作用する津波波力は、式(1)の静水圧式によって概ね 安全側に評価することができるといえる。

しかしながら、免震試験体 No.2 のみ実験値が算定 値を上回る結果となった。免震試験体の変位と堰上 げ高さの関係を図 16 に、変位と水深係数の関係を 図 17 に示す。免震試験体 No.2 は同等の変位が生じ た免震試験体 No.3、No.4 と比べて堰上げ高さが低 く、それに伴い、算定した水深係数が a=1.47 と小さ くなったため、算定値よりも実験値の方が大きくな ったと考えられる。しかし、この堰上げ高さがばら つきの範囲内であるか、特定の原因によるものであ るかは、現状では不明である。今後より詳細な実験 を実施する必要がある。

6 まとめ

本研究では水理模型実験により津波に対する免 震建物の挙動を分析し、免震建物への静水圧式の適 用性について検討した。得られた知見を以下に示す。

- 津波荷重に対する免震試験体の応答変位は、流速 が最大となる時刻付近で最大値を示した。また、 本実験の対象建物は浸水深 5.3mの津波に対して 擁壁衝突が想定される 60cm 程度の変位となったが、 応答加速度は大地震時に想定されるレベルより小さ くなった。応答速度もオイルダンパーの限界速度と して想定されるレベルには達しない程度となった。
- フルード数の値が3以下となる津波を対象とした場合では、免震試験体に作用する波力は、波力試験体に作用する波力と近い値となり、試験体の違いによる波力の大きな増減は確認されなかった。
- 3) 堰上げ高さから算出した水深係数を用いた検討 結果より、水深係数を適切に設定できれば、静水 圧式を用いて、免震建物に作用する津波波力を概 ね安全側に評価することが可能であることを確 認した。しかしながら一部に危険側の評価となる ケースも確認されたため、今後より詳細な実験を 実施する必要がある。

謝辞

本研究を実施するにあたり、共同研究者の有賀司 氏、阪上雄斗氏、川上善嗣氏、藤森智氏、遠藤龍司 氏らから多大なる尽力を賜りました。

参考文献

- 国土交通省国土技術政策総合研究所:津波避難ビル等の構造 上の要件の解説,2012.3
- 2) 中埜良昭ら:2011年東北地方太平洋沖地震による建築物等の 被害調査に基づく津波荷重の評価-比較的単純な工作物およ び建築物の被害調査結果に基づく検討-,構造工学論文集, Vol.58B, pp.97-104
- 小林正人,服部龍太郎,藤森智:津波荷重に対する免震建物の構造安全性評価基準の提案,日本建築学会技術報告集,第23巻,第53号,pp.71-76,2017.
- 4) 日本建築学会:建築物荷重指針・同解説(2015), pp.563-592

研究助成事業