# 免震建物に作用する津波荷重に関する水理模型実験

明治大学大学院 阪上 雄斗

# 1 はじめに

東北地方太平洋沖地震以降,各自治体より津波避 難ビルの整備など多岐に渡る津波対策が行われて おり,国土交通省より式(1)で示される静水圧式を用 いた検討方法が示されている<sup>1)</sup>。一方で,免震建物 においては津波が作用した際の波圧分布や津波荷 重の評価法については未だ不明確である。

そこで、本研究では免震建物を対象とした水理模型実験を実施し、免震建物に作用する波圧分布について分析を行い、免震建物への静水圧式の適用性を 評価することを目的とする。





ここで,ρ:水の単位体積質量,g:重力加速度, B:受圧面の幅,z<sub>2</sub>:津波受圧面上端高さ,z<sub>1</sub>:津波 受圧面下端高さ,a:水深係数,η:設計用浸水深

#### 2 水理模型実験概要

# 2.1 実験装置および試験体

実験水路および測定機器の配置を図2に示す。実 験水路は、全長13m,水路幅30cm、高さ40cmの矩 形の鋼製水路(一部観察用ガラス)であり、水路端 で貯水し遮水壁を開放することで造波する仕組み である。水路はあらかじめ水を溜めた一様水深部 (水深1cm)と陸部に分かれる。一様水深部と陸部の 境から勾配傾斜面(全長1.2m,勾配1/20)を設置し、 津波は勾配傾斜面を遡上して試験体に作用する。

本実験では、図2に点線で示す位置で津波の波高 (以下,浸水深)と流速を、それぞれサーボ式波高 計と電磁流速計で測定した。計測は試験体からの反 射波の影響を考慮して、試験体の受圧面から 30cm 前方で実施した。

試験体は建物試験体を模擬した免震試験体,固定 試験体および試験体に作用する波力を算定するこ とを目的とした波力算定用試験体(以下,波力試験 体)の3種類を製作した。



#### 図2 実験装置概要

建物試験体の対象建物は高さ 28m, 幅 8m, 奥行 き 24m の 8 階建て RC 造とした。縮尺は 1/80 とし, 原型の免震周期を 4s とした試験体である。表 1 に 示す免震試験体諸元はフルードの相似則に従って 設定した。試験体材料はアクリル板およびステンレ ス鋼板を用いた。免震層はリニアボールスライダー と引張りばねを用いて再現した。

波力試験体はステンレス鋼板を用い,上部固定の 片持ち支持として実験水路に設置する(図4参照)。 試験体幅は,建物試験体と同じ10cmとした。

表1 建物試験体諸元

| 建物試験体諸元       |                 |          |        |
|---------------|-----------------|----------|--------|
|               | 縮尺              | 原型       | 試験体    |
| 高さH           | λ               | 28m      | 35cm   |
| 幅 <i>B</i>    | λ               | 8m       | 10cm   |
| 奥行き <i>D</i>  | λ               | 24m      | 30cm   |
| 質量//          | $\lambda^3$     | 1997t    | 3.9kg  |
| 固有周期7         | $\lambda^{1/2}$ | 4. 0s    | 0.45s  |
| 水平剛性 <i>K</i> | $\lambda^2$     | 4927kN/m | 769N/m |
| 変位 δ          | λ               | 51cm     | 6.4mm  |

### 2.2 水理模型実験

通過波検定実験と3種類の試験体実験を実施した。 通過波検定実験は、試験体のない状態での浸水深 $\eta$ と流速vを計測し、流れの状態を表すフルード数Fr $(=v/\sqrt{g\eta})$ の算定を目的として実施した。実験は試験 体設置位置でのばらつきを考慮して 10 回行った。 計測はサンプリング間隔を 1/1000 秒とし、流況分析 のため 16 倍スローの動画を撮影した。

免震試験体を用いた水理模型実験では,免震建物 に作用する波圧分布を把握することを目的として 実施した。津波の浸水深,流速は図2に示す位置で 計測した。図3,写真1に実験の概要と流況を示す。

また,固定試験体を用いた水理模型実験では,固 定建物に作用する波圧分布を把握することを目的 として,免震層を固定し免震試験体と同様の実験を 実施した。



図3 免震試験体実験概要 写真1 実験の流況 波力試験体を用いた実験では,試験体に作用する 津波波力の算定を目的として実施した。津波の浸水 深,流速は図2に示す位置で計測した。防水処理し たひずみゲージをステンレス鋼板の両面に4枚ずつ 貼付け,試験体の曲げひずみを計測した。曲げひず みからステンレス鋼板に生じる曲げモーメントを 算定し,その値から得られたせん断力を試験体に作 用する津波波力とみなした。図4,写真2に実験の 概要と実験の流況を示す。



# 図4 波力試験体実験概要 写真2 実験の流況 波圧の計測に際しては、全ての試験体実験におい て試験体前面に図5のように9個の小型波圧計(左 下からP1~P9)を配置した。計測した各波圧に負担 面積を乗じ、足し合わせることで波力を算定した。





## 3 実験結果

本実験で得られた計測データは 50Hz のローパス フィルタでノイズ除去を行っている。

# 3.1 通過波検定実験

通過波検定実験の浸水深と流速の時刻歴の一例 を図6,図7に示す。浸水深は波が計測位置に到達 した後,しばらくして最大の浸水深に達した。一方 で,流速は波の到達時に最大値を向かえ,徐々に減 少していく傾向にあることを確認した。また,浸水 深と流速の関係について,流速が最大となる時刻で の浸水深はやや小さく,浸水深が最大となる時刻で の流速は小さいことから,最大流速と最大浸水深の 時刻は一致しないことがわかった。

最大浸水深および最大流速からフルード数を算 定し、10回の実験値を平均すると 1.95 となった。 本実験水路は、0.7~2 程度<sup>2)</sup>とされる津波のフルー ド数と概ね近い津波を造波したことを確認した。



#### 3.2 免震試験体実験

波圧計(P2,P5,P8)で計測した波圧の時刻歴の一例 を図 8 に示す。最下段となる波圧計 P2 が最も大き な波圧を示し、計測位置が高くなるにつれて波圧が 小さくなった。また、P1、P2、P3 のように同一高さ に配置した波圧計で計測した波圧は、計測値に若干 の差はあるものの概ね近い傾向を示した。



### 3.3 固定試験体実験

波圧計(P2,P5,P8)で計測した波圧の時刻歴の一例 を図9に示す。波圧の最大値には,最下段となる波 圧計 P2 が最も大きな波圧を示し,計測位置が高く なるにつれて波圧が小さくなった。しかし,P2の波 圧は最大値を向かえた後,波圧が低下し,一時的に P5の波圧より小さい値となった。同一高さに配置し た P1, P3 で計測した波圧でも同様の傾向を示した。



ここで,図8,9に示す時刻t,Tにおける建物試 験体実験の流況を写真3,4に示す。固定試験体の 波圧が低下した時刻T付近では,試験体に衝突し堰 き上がった津波が水塊となり,試験体前面に落下し ていることを確認した。一方で免震試験体では,津 波衝突後に変位が生じ,固定試験体と比べ試験体前 面から離れた位置に水塊が落下した。試験体の違い による流況の変化が,固定試験体の波圧が低下した 原因の1つとして考えられる。



免震試験体と固定試験体の波圧の時刻歴の比較 を図 10 に示す。津波衝突後,両試験体ともほぼ同 時刻に P2 で最大値を示した。P5, P8 では固定試験 体の方が早い時刻で波圧を計測したが,試験体の違 いによる波圧の大きな増減は確認できなかった。



4 免震建物に作用する津波波力の評価

## 4.1 波力試験体に作用する波力

波圧計から算定した波力(以下, Qc)と曲げひず みから算定した波力(以下, Qs)の時刻歴の一例を 図 12 に示す。Qc と Qs は概ね同時刻で最大値を示 した。また,多くのケースでQc の値がQs を上回っ たが,両者の最大値も近い値となることを確認した。 以上より,波圧で計測した波圧に負担面積を乗じて, 波力を評価可能であると考えられる。



4.2 免震試験体に作用する波力

図 13 に免震試験体に作用する波力と波圧の関係 を示す。波圧と波力の最大値となる時刻が異なった。 津波先端部は衝撃的な波圧だが,作用する領域は局 所的であり,波力への影響は小さいと考えられる。 図 14 に建物試験体の波力の比較を示す。免震試験 体の波力が固定試験体の波力を上回り,最大となる 時刻が異なった。原因としては,固定試験体最下段 の波圧が最大値以降に低下することや,波圧と波力 で最大となる時刻が異なることが考えられる。



建物試験体の最大波圧 $P_{max}$ を $\rho g\eta_{max}$ で除すことに

より無次元化<sup>3)</sup>した。ここで,*P<sub>max</sub>/pgη<sub>max</sub>*を無次元最 大波圧, η<sub>max</sub>は各実験の最大浸水深とする。図 15 に 建物試験体における最大波圧分布を示す。両試験体 ともに最下段波圧が,静水圧分布を上回ったが,津 波先端部の衝撃的波圧が作用したためである。



図 16 に各試験体の最大波力時の波圧における無 次元化波圧分布を示す。試験体に作用する波圧は概 ね a=2.0 付近に分布し,静水圧分布と近い傾向を示 したが,固定試験体最下段の波圧分布は a=2.0 を下 回った。これは,固定試験体の波圧が最大値を向か えた後,著しく低下したためである。



4.4 水深係数の算定

建物試験体実験における津波波力が最大となる 時刻で、津波の堰上げ高さを動画(写真5参照)で 計測し、各実験ケースの最大浸水深で除すこと水深 係数を算定した。図17に浸水深と水深係数の関係 を示す。実験ケースでばらつきはあるが、本実験で は、水深係数は概ね *a*=1.5~2.5の範囲となった。



### 4.5 静水圧式を用いた津波波力の評価

静水圧式の免震建物への適用性を分析する。ここで,式(1)におけるηは各試験体実験で計測した最大 浸水深,水深係数は堰上げ高さから算定した値,壁 面開口率は0とする。

波圧計から算定した波力(以下,実験値)と,堰 上げ高さから算出した水深係数を用いて算定した 波力(以下,算定値)および水深係数(*a*=1.5, 2, 3) を用いて推定した波力(以下,推定値)を比較した。

建物試験体における実験値と推定値の比較を図 18 に示す。本実験で水深係数 a=2 を用いて,実験値 を概ね包絡することができた。算定値と実験値の関 係を図 19 に示す。実験ケースによって,大小関係 に違いはあるものの,算定値と実験値は概ね近い値 となることを確認した。以上より,水深係数を適切 に設定できれば,免震建物に作用する波力は,静水 圧式を用いて概ね評価することができるといえる。

しかしながら、衝撃的な波圧である津波先端部が 作用する場合に、波圧分布は静水圧分布と一時的に 異なる可能性があることに留意する必要がある。



## 5 まとめ

本論では,免震建物に作用する波圧分布の分析を 行い,免震建物への静水圧式の適用性について評価 を行った。衝撃的な波圧である津波先端部が作用し た際の最大波圧分布は,一部静水圧分布を上回った。 一方で,波力最大時の波圧分布は,静水圧分布と近 い傾向となることを確認した。また,堰上げ高さか ら算定した水深係数の検討より,水深係数を適切に 設定できれば免震建物に作用する津波波力を静水 圧式を用いて,概ね評価することが可能であること を確認した。

# 参考文献

- 国土交通省国土技術政策総合研究所:津波避難ビル 等の構造上の要件の解説,2012.3
- 松冨英夫ら: Banda Aceh と周辺における 2004 年イン ド洋津波と被害想定からみた課題,海岸工学論文集, 第 52 巻,pp1366-1370
- 朝倉良介ら:護岸を越流した津波による波力に関する実験的研究,海岸工学論文集,第47巻,pp.911-915